THERMOCHEMICAL AND STRUCTURAL INVESTIGATIONS ON ALKALI METAL CHLORIDES-IRON(III)-CHLORIDE SYSTEMS

M. Prien and H. J. Seifert

Inorganic Chemistry, University GH Kassel, 03500 Kassel, Germany

(Received December 16, 1994)

Abstract

The pseudobinary systems ACl-FeCl₃ (A = Na, K, Rb, Cs) were reinvestigated by means of differential thermal analysis and X-ray powder diffraction. The existence of the compounds AFeCl₄ (A = Na-Cs) and Cs₃Fe₂Cl₉ could be confirmed; Cs₃Fe₂Cl₉ is a stable compound which decomposes to CsCl and CsFeCl₄ above 270°C. Additionally, two Rb-compounds – Rb₃FeCl₆ and Rb₃Fe₂Cl₉ – were found, which decompose, when heated, in the solid state. Rb₃Fe₂Cl₉ is isotypic with the analogous Cs-compound; Rb₃FeCl₆ has the Cs₃BiCl₆ structure. Cs₃FeCl₆ is isotypic with Cs₃CrCl₆, a recently found orthorhombic variant of the elpasolite type.

Keywords: DTA, pseudobinary systems ACI-FeCl₃, solution calorimetry, XRD

Introduction

Investigations of phase diagrams of the systems ACl-FeCl₃ (A=Cs, Rb, K, Na) have provided differing results. Early investigations by Johnstone [1] and Morozow [2] describe the systems NaCl-FeCl₃ and KCl-FeCl₃ as purely eutectic, whereas Cook [3] found compounds NaFeCl₄ and KFeCl₄. According to Morozow [4] such a 1:1-compound also exists in the systems with RbCl and CsCl. Later Kovsarnechan [5] and Feist [6] found a compound Cs₃Fe₂Cl₉ in the system CsCl-FeCl₃, which decomposes in the solid state. They gave differing descriptions about a further compound Cs₃FeCl₆. According to Kovsarnechan it melts incongruently at 480°C and undergoes a polymorphic phase transition at 345°C, whereas Feist describes the compound as metastable at all temperatures. – The crystal structures of all compounds AFeCl₄ are well known from the work of Meyer [7]; they all contain [FeCl₄]⁻ – tetrahedra. The enneachloride Cs₃Fe₂Cl₉ crystallizes in the hexagonal space group P6₃/mmc [5].

In this paper all systems were studied by DTA and XRD measurements. Of special interest were two questions:

1) Does a stable compound Cs₃FeCl₆ exist?

2) Are there more compounds other than $RbFeCl_4$ in the system $RbCl_7$ FeCl_3?

Furthermore, formation enthalpies for the formation of some chloro-ferrates(III) from ACl and FeCl₃ at ambient temperature were determined, and previously unknown crystal structures were investigated by analogous indexing of powder patterns.

Experimental

Source of primary compounds

FeCl₃ (Fa. Merck, quality pa.) was purified by sublimation in a Cl₂-stream $(mp. = 318^{\circ}C)$. The alkali metal chlorides were dried by heating at 500°C.

Differential thermal analysis

The laboratory-built DTA device has already been described [8]. Mixtures of ACl and FeCl₃ (~0.5 g, prepared in a glove-box) were melted in sealed quartz ampoules in a gas flame, then quenched and, if necessary, annealed. With these samples heating curves (2 deg·min⁻¹) were measured, followed by cooling curves.

X-ray diffraction

Powder patterns at ambient temperature were taken with a Philips PW 1050/25 goniometer equipped with a proportional counter and a vacuum attachment. During exposure (CuK_{α}-radiation) the samples were under He atmosphere. Al₂O₃ (*a*=475.92 pm; τ =1299.00 pm) was used as internal standard for the calculation of unit cell parameters (LAZY PULVERIX [9]).

Solution calorimetry

The apparatus used was a laboratory-built isoperibolic calorimeter [10] with a volume of 1.31. Samples of 3-6 g thus yielded virtually ideal solutions (dissolution ratio 1:3500 mol/mol). Each ΔH was measured at least in triplicate. The alkali chlorides were dissolved in a solution of LaCl₃ of adequate concentration.

Results

Phase diagrams

The phase diagrams of the systems CsCl-FeCl₃ and RbCl-FeCl₃, which are different from literature data, are given in Fig. 1.

J. Thermal Anal., 45, 1995

System CsCl–FeCl₃

Beside the congruently-melting compound CsFeCl₄ two other chloroferrates exist, which decompose in the solid state. The decomposition of Cs₃Fe₂Cl₉ is well reversible in the timescale of DTA. The thermal effect was found at 270°C in heating curves and at ~240°C in cooling curves. The decomposition temperature of Cs₃FeCl₆ was found in heating curves at 150°C; the reverse reaction during cooling is so slow that it could not be detected. Therefore, we had to prepare pure Cs₃FeCl₆ by dehydration of Cs₃FeCl₆·H₂O in a HCl-stream at 120°C. The hydrate was synthesized in acetic acid as solvent, as recently described [11].

Kovsarnechan [5] found two thermal effects for a sample with 25 mole % FeCl₃. However, the effect at 345°C must be attributed to the eutectic at 45.5 mole % FeCl₃, the effect at 481°C to the α - β -transition of CsCl.

The system RbCl-FeCl₃

The results of Morozow [4] – existence of a congruently melting compound RbFeCl₄ and two eutectics – could be confirmed. Additionally two other compounds were found; $Rb_3Fe_2Cl_9$ decomposes in the solid state at 192°C and Rb_3FeCl_6 at 260°C. It must be pointed out that the formation of these two compounds from quenched melts of the adequate composition occurred only by annealing the sample for ~4 weeks at temperatures higher than ~140°C. When they were heated above their decomposition temperatures and then annealed, their X-ray patterns displayed the peaks $RbCl+RbFeCl_4$ or $Rb_3FeCl_6+RbFeCl_4$, respectively.

Systems KCl–FeCl₃ and NaCl–FeCl₃

According to Cook [3] the compounds AFeCl₄ exist in both systems. We could confirm these findings and found melting temperatures of 252°C for KFeCl₄ and 163°C for NaFeCl₄. A polymorphic transition for KFeCl₄ occurs at 154°C.

Crystal structures

Until now the structures of the 3:1-compounds and of Rb₃Fe₂Cl₉ were unknown. The unit cell parameters are compiled in Table 1.

For the intensity calculations for the two Rb-compounds the site parameters of the ions were taken from $Cs_3Fe_2Cl_9$ [5] and Cs_3BiCl_6 [12], respectively.

 Cs_3FeCl_6 is isotypic with Cs_3CrCl_6 whose structure was solved recently in our group (still unpublished). It is a hitherto unknown distortion variant of the epasolite type. In the orthorhombic space group Pnnm six formula units exist. In Table 2 the results of an intensity calculation for the first 20 observed reflections are compiled. (It must be pointed out that there is a disorder of some Cs^+ and Cl^- -ions, given by an occupation factor 0.5.)

Compounds	Stucture type	<i>a</i> /pm	<i>b</i> /pm	c/pm	β/°
Cs ₃ FeCl ₆	Cs ₃ CrCl ₆ –Pnnm	2306.0(6)	1120.8(2)	749.7(2)	
Rb ₃ FeCl ₆	Cs ₃ BiCl ₆ C2/c	2501.5(2)	760.0(2)	1233.6(7)	100.7°
Rb ₃ Fe ₂ Cl ₉	K ₃ W ₂ Cl ₉ -P6 ₃ /mmc	704.9(8)		1757.8(4)	

Table 1 Unit cell parameters of hitherto unknown chloroferrates(III) with cesium and rubidium

Solution calorimetry

Cook *et al.* [3] found by solution calorimetry that the compounds NaFeCl₄ and KFeCl₄ are formed from ACl and FeCl₃ in exothermic reactions. We have measured such enthalpies for all those compounds which could be prepared in stoichiometrically pure form (Table 2). To avoid hydrolysis, the compounds were dissolved in 0.1 m hydrochloric acid. For the binary compounds the fol-

hkl	$v_{calc.}$	Icalc.	V _{exp} .	I _{exp.}
311	9.20	1	9.16	1
121	10.08	4	10.08	6
510	10.41	7	10.35	7
411	10.50	7	10.46	10
221	10.62	5	10.60	5
420	11.06	6	11.09	5
501	11.32	7	11.32	• 7
321	11.47	100	11.49	100
600	11.57	33	11.52	35
002	11.87	42	11.88	45
511	12.00	2	12.07	14
130	12. 07	11		
230	12.53	3	12.56	7
427	12.57	4		
312	13.82	4	13.85	9
231	13.89	4		
620	14.08	23	14.10	30
022	14.33	13	14.31	15
701	14.81	6	14.84	11
222	14.85	4		

Table 2 Crystal data for Cs₃FeCl₆ in S.G. Pnnm (CuK_a-radiation)

lowing $\Delta_{sol}H_{298}^{o}$ values were found: FeCl₃ = -142.5, NaCl = +4.1, KCl = +17.6; RbCl = +17.3; CsCl = 17.6 kJ·mol⁻¹.

The synproportionation reactions for the Cs-compounds are:

$$2/3Cs_{1.5}FeCl_{4.5} + 1/3FeCl_3 = CsFeCl_4$$

$$1/4Cs_{3}FeCl_{6} + 3/4CsFeCl_{4} = Cs_{1.5}FeCl_{4.5}$$

$$Cs_{1.5}FeCl_{4.5}+1.5CsCl=Cs_3FeCl_6$$

Compound	$\Delta_{\rm sol}H^{\circ}$	$\Delta_{\mathbf{f}} H^{\circ}$	$\Delta_{syn}H^{o}$
NaFeC1 ₄	-131.4	-7.0	_
KFeC14	-91.0	-33.9	_
R bFeCl₄	-75.3	-49.9	_
CsFeCl₄	-68.0	-56.9	-3.6
1/2Cs ₃ Fe ₂ Cl ₉	-36.2	-79.9	-19.0
Cs ₃ FeCl ₆	-10.3	-79.4	0.5

Table 3 Solution enthalpies and derived values in kJ·mol⁻¹ for chloroferrates(III)

 $\Delta_{sol}H^{\circ}$ = solution enthalpy; $\Delta_{t}H^{\circ}$ = enthalpy of formation from the binary compounds; $\Delta_{syn}H^{\circ}$ = syn-proportionation enthalpy

Discussion

The ionic radii (Shannon [13]) of Cr^{3+} (0.62 Å) and Fe^{3+} (0.65 Å) differ only slightly. Thus, both trichlorides form layer structures with MCl_{6/2}-octahedra. However, CrCl₃ has a melting point of 1150°C, FeCl₃ of 318°C. Consequently, the melting points of the compounds A₃CrCl₆ and A₃Cr₂Cl₉ lie higher than 800°C, while the analogous Cs- and Rb-compounds of Fe(III) decompose near 200°C.

But there is still a second reason for the low temperature of stability. The dominating compounds in the FeCl₃-systems are the tetrachloroferrates AFeCl₄ with isolated FeCl₄-tetrahedra [7]. They melt congruently at temperatures in the range of 160–390°C. This can be explained by the site-preference-energy (SPE) of the ligand field theory, which requires for Cr^{3+} a SPE 1/2 Δ_{oct} for an octahedral environment and for Fe³⁺ 1/2 Δ_{oct} for coordination tetrahedra.

The electron configuration of the d^3 -system of Cr^{3+} is t_{2g}^3 for octahedra with non-bonding t_{2g} -orbitals and $e_g^2 t_{2g}^{*1}$ for tetrahedra with anti-bonding t_{2g}^* -orbitals. Thus, a destabilisation of Δ_{tetr} (ligand-field splitting in tetrahedra) or – with $\Delta_{\text{tetr}} \sim 1/2\Delta_{\text{oct}} - \text{of } 1/2\Delta_{\text{oct}}$ exists for the tetrahedral coordination. For the $3d^5$ -system of Fe³⁺ the configuration in octahedral coordination is $t_{2g}^3 e_g^{*2}$ which gives a destabilisation of $2\Delta_{\text{oct}}$. For tetrahedral surroundings the configuration is $e_g t_{2g}^{*3}$ with a destabilisation $3\Delta_{\text{tetr}} \sim 1^{1/2}\Delta_{\text{oct}}$. Thus a SPE of $1/2\Delta_{\text{oct}}$ exists for tetrahedra.

The other two elements which form sufficiently stable chloro-metallates(III) are Ti($r_{Ti}^{3+}=0.67$ Å) and V($r_V^{3+}=0.64$). However, descriptions of phase diagrams ACl/MCl₃ were inconsistent. For titanium the existence of compounds A₃TiCl₆ and A₃Ti₂Cl₉ were proved by X-ray results; additionally 1:1-compounds ATiCl₄ were said to exist [14]. In the VCl₃-systems only the compounds with octahedral coordination were proved [15].

* * *

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Appendix

Pormula	Cs2CrCl4
Politicia Constal constan	orthorombia
Crystal system	Draw (No. 59)
Space group	Prinm (No. 58)
Lattice parameters (pm)	a = 2294.7(7)
determined at 298 K with	b = 1117.5 (3)
25 reflections	c = 744.6 (2)
Volume (10 ⁶ pm ³)	1909.4 (8)
Number of F.U.	6
Calculated density (g/cm ³)	3.462
Scan-width (ω -scan)	$1.0^{\circ}\pm0.70$ (tan Θ)°
Collected reflections	2863 (2.5<Θ<24)
within	0≤ <i>h</i> ≤14
	<i>–</i> 7≤ <i>k</i> ≤12
	<i>–</i> 20≤ <i>l</i> ≤2
Independent reflections	1477
with $F_{o} > 0$	
Agreement factors of	
equivalent reflections (R_{int})	0.0357
Absorption coefficient μ (mm ⁻¹)	8.50
Absorption correction	semi-empirical (ψ -scans)
Number of refined parameters	106
Reliability factors ^a	$R = 0.0357$ for $F_0 < 4\sigma$
	$wR_2 = 0.0933$ for all data
	GooF = 1.113

Experimental data and structure refinement parametters for Cs₃CrCl₆

^a Definitions of reliability factors: $R = \sum ||F_o| - |F_c|| / \sum |F_o|$ $wR_2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$

Atom	x/a	y/b	z/c	
4 Cs1 in g	0.13316	0.47603	0.00000	0.04029
4 Cs2 in g	0.18820	0.20109	0.50000	0.04974
4 Cs3 in g	0.32767	0.24408	0.00000	0.04905
4.0.5 Cs4 in g	0.49416	0.62127	0.00000	0.03469
8.0.5 Cs5 in h	0.00185	0.19739	0.06997	0.04184
4 Cr1 in g	0.32784	0.48011	0.50000	0.02367
2 Cr2 in d	0.00000	0.50000	0.50000	0.02568
8 Cl1 in h	0.25513	0.47012	0.27809	0.04030
4 Cl2 in g	0.32412	0.68980	0.50000	0.04500
8 Cl3 in h	0.40021	0.48957	0.27402	0.04340
4 Cl4 in g	0.33687	0.26991	0.50000	0.04237
8.0.5 Cl5 in h	0.03693	0.62945	0.27874	0.05125
4.0.5 Cl6 in g	0.08823	0.39468	-0.50000	0.07192
4.0.5 Cl7 in f	0.00000	0.50000	0.18394	0.03494
4.0.5 Cl8 in g	0.01370	0.71079	0.50000	0.04565
4.0.5 Cl9 in g	0.10111	0.47022	-0.50000	0.04645

Atomic coordinates and equivalent temperature parameters (pm²) in Cs₃CrCl₆

References

- 1 H. F. Johnstone, H. C. Weingartner and W. E. Wische, J. Amer. Chem. Soc., 64 (1942) 241.
- 2 I. S. Morozow and D. Y. Toptygin, Zh. Neorg. Khim., 2 (1957) 2129.
- 3 C. M. Cook and W. E. Dunn, J. Phys. Chem., 65 (1961) 1505.
- 4 A. I. Morozow and E. V. Makusyukova, Zh. Neorg. Khim., 20 (1975) 2001.
- 5 M. T. Kovsarnechan, J. Roziere and D. Mascherpa-Corral, J. Inorg. Nucl. Chem., 40 (1978) 2009.
- 6 M. Feist, D. Hass and V. Briehn, Z. Anorg. Allg. Chem., 542 (1986) 223.
- 7 G. Meyer and E. Schwan, Z. Naturforsch., B 35 (1980) 117.
- 8 H. J. Seifert and G. Thiel, Thermochim. Acta, 20 (1977) 244.
- 9 K. Yvon, W. Jeitschko and E. Parthe, J. Appl. Cristallogr., 10 (1977) 73.
- 10 G. Thiel and H. J. Seifert, Thermochim. Acta, 22 (1978) 363.
- 11 M. Prien, G. Koske and H. J. Seifert, Z. Anorg. Allg. Chem., 620 (1994) 1943.
- 12 F. Benachenhou, G. Mairesse, G. Nowogrocki and D. Thomas, J. Solid State Chem., 65 (1986) 13.
- 13 R. D. Shannon, Acta Cryst., A23 (1976) 751.
- 14 E. Chassaing, F. Basile and G. Lorthioir, Ann. Chim. [France], 4 (1979) 295.
- 15 I. V. Vasilkova and I. L. Perfilova, Zh. Neorg. Khim., 10 (1965) 2296.

Zusammensetzung — Die Zustandsdiagramme der pseudobinären Systeme ACl-FeCl₃ (A = Na, K, Rb, Cs) wurden mittels Differenzthermoanalyse und Röntgenbeugung an Kristallpulvern neu untersucht. Die Existenz der bekannten Verbindungen AFeCl₄ (A = Na-Cs) und Cs₃Fe₂Cl₉ wurde bestätigt; Cs₃Fe₂Cl₉ ist eine stabile Verbindung, die oberhalb 270°C zu CsCl und CsFeCl₄

zerfällt. Neu gefunden wurden die Verbindungen $Rb_3Fe_2Cl_9$ und $Rb_3Fe_2Cl_6$, die beide beim Erhitzen im festen Zustand zerfallen. Das Enneachlorid ist isotyp mit $Cs_3Fe_2Cl_9$, die 3:1-Verbindungen kristallisiert im Cs_3BiCl_6 -Typ. Cs_3FeCl_6 ist isotyp mit Cs_3CrCl_6 , das in einer neugefundenen orthorhombischen Verzerrungsvariante des Elpasolith-Typs kristallisiert.